
LA-UR-21-27686
Approved for public release; distribution is unlimited.

Title: Secure System Composition and Type Checking using Cryptographic Proofs

Author(s): Barrack, Daniel Abraham

Intended for: Student Symposium

Issued: 2021-08-03

Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001. By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

 1 1Managed by Triad National Security, LLC., for the U.S. Department of Energy’s NNSA.

Secure System Composition
and Type Checking using
Cryptographic Proofs

Collaborator: Zachary DeStefano
Mentor: Michael J. Dixon
Co-Mentor: Boris Gelfand

Dani Barrack
A-4: Advanced Research in Cyber Systems
Email: dbarrack@lanl.gov

August 3rd, 2021

 2

We can use formal methods to verify that systems compose correctly
without the possibility of incorrect behavior.

This means exhaustively checking that System A’s postconditions agree
with System B’s preconditions. If so, it is safe to compose.

Normal Setting: Every computational path must be accounted for and
checked. Verification cost (time) is multiplicative across systems.
•

Cost = |S1| × |S2 | × … × |Sn|

Challenge: Formally Verifying System Composition

Outputs: Model Inputs: Model
(properly trained)

Postcondition Precondition
System A:

Train ML Model

System B:

Classify Points

 3

Zero-knowledge proofs (ZKPs) can be used to provide type checking
guarantees of input/output properties without exposing secrets.
Verification can be done modularly so that the cost is additive.

Cost = |S1| + |S2| + … + |Sn|

Bad proofs and inputs can still exist, but now are cryptographically
(exponentially) hard to find and exploit.

Solution: Assuring Safe Composition via zkSNARKs

ZKP
Verifier

Outputs: Trained model Inputs: Trained model
Postcondition Precondition

zkSNARK proving model is valid

System A:

Train ML Model

System B:

Classify Points

 4

Preconditions and Postconditions with Types
Type MLModel =
 (w : Weights, error(w) < 0.05, log : AuditLog, execute(log) == w)
trainModel : (x : [Input]) -> MLModel

We can generate proofs (or an audit log) of desired properties (e.g. functional
correctness) and include them with input to other functions.

This allows us to use a dependent type to assure that only models that were actually
trained on actual data and are within a certain error threshold can be used by a
classifier.

The audit log and its proof would be huge. Instead, we can use a super small
zkSNARK to prove this dependent type and pass it along instead. We only need to
handle the case where the check fails.

classifyPoint : (y : Input, model : MLModel) -> Class

 5

Preconditions and Postconditions with Types
Type MLModel =
 (w : Weights, error(w) < 0.05, log : AuditLog, execute(log) == w)
trainModel : (x : [Input]) -> MLModel

We can generate proofs (or an audit log) of desired properties (e.g. functional
correctness) and include them with input to other functions.

This allows us to use a dependent type to assure that only models that were actually
trained on actual data and are within a certain error threshold can be used by a
classifier.

The audit log and its proof would be huge. Instead, we can use a super small
zkSNARK to prove this dependent type and pass it along instead. We only need to
handle the case where the check fails.

classifyPoint : (y : Input, model : MLModel, verif : ZKPVerifier) -> IO Class

zkp : ZKP

 6

Dependent Type Replacement by ZKPs

 7

Benefits & Capabilities
Using zero-knowledge proofs, we can combine cyber systems while
preventing certain incorrect and malicious behaviors relating to
mismatched outputs and input constraints.

Portable proofs artificially
extends our trusted
computing base beyond
just our own system

ZKPs give fine-grained
control over which bits of
information to keep
secret and which to prove

ZKPs enforce system
compatibility without the
expense of manually
proving correctness

 8

Functional Gadget Library

Implementation Summary

We developed a library of
zkSNARK gadgets and types

in C++ using Libsnark

We developed a custom compiler
in Haskell to apply functional

programming techniques to
zkSNARK development

We produced a demo
dependently-typed zkSNARK
application for RSA encryption

and verification

Prototype Compiler Type Checking Demo

DSL Flattener

Custom Domain Specific Language

Type Extractor

Libsnark

Map, ZipWith, Fold, ...

Large Integer Math

RSA Components

Primitive Operations
Circuit

Generator
Haskell

Generator

C++ Gadget
Generator

Zero-Knowledge RSA
Encryption Application

Zero-Knowledge RSA Verifier
and Multiplier Application

Application Communication
Utility Scripts

 9

Demo:
Verifying an RSA Encryption

Pipeline

 10

Background: RSA Cryptography

RSA is multiplicatively (×) homomorphic, meaning that if we encrypt two messages
with the same key and modulus, the multiplication of those two ciphertexts equals
the encryption of the multiplication of the plaintexts

Encryption:

Decryption:

 11

Demo: RSA Encryption Pipeline

Prog A’s Output
c1, c2, modulus

m1=7
m2=5

Enck(35)

Program A Program B

ENC

ENC
N=pq

Input Prog B’s Output:
Encrypted product

MULT

Sample Pipeline
1. Program A encrypts two secret messages using RSA
2. Program B receives encrypted messages and multiplies them

Challenge
If we implement A and B in Haskell, program B can’t guarantee it is multiplying
valid RSA ciphertexts. B could end up yielding garbage and would be an error a
type checker could catch IF it could see everything 1) only discoverable at runtime
and 2) under the covers of encryption.

 12

Demo: Encryption Pipeline with Type Checking ZKPs

Prog A’s Output
c1, c2, modulus

m1=7
m2=5

Enck(35)

Program A Program B

ENC

ENC
N=pq

ZKP Type
Verifier

Input Prog B’s Output:
Encrypted product

ZKP Type Checking Pipeline

Regular Computation

ZKP Type
Prover

MULT

 13

Demo: Proving Type Checks with ZKPs

We can encode this proof as the type ValidRSAPair above, and generate a
zkSNARK that proves type compliance using our compiler toolchain.

We can use Type-Level Haskell to generate redacted and un-redacted types, so
type information is not lost between function calls, but sensitive information is not
present.

type ValidRSAPair =
EncRSA(key, modulus, message1) == cipher1
and
EncRSA(key, modulus, message2) == cipher2

Haskell’s type checker can’t verify the encrypted variable’s type until program
runtime. Instead, we instruct it to know to ask for a ZKP of its type later.
Example. Type for a valid pair of RSA ciphertexts

 14

A function to Illustrate Homomorphic Property

encryptMessagePair ::
Length
-> Message
-> Message
-> PublicKey
-> Modulus
-> IO (Redacted RSAPair)

This function encrypts two messages with the same key and modulus, and returns
them along with the bit width.

The decrypt function relies on the fact that the two supplied ciphertexts are encrypted
with the same key and modulus.

multiplyPair ::
IO (Redacted RSAPair)
-> PrivateKey
-> Integer
-> Message

 15

Demo: Unredacted Pair Multiplier

multiplyPair ::
(Length, Message, Message, Key, Mod, CipherText, CipherText)
-> PrivateKey
-> Integer
-> IO Message
multiplyPair r@(bits,m1,m2,pubKey,modulus,c1,c2) = do
 verifyZKP r
 prod <- (c1 * c2) `mod` modulus
 return prod

A non- redacted multiplication function input reveals sensitive information

 16

Demo: Unredacted Pair Multiplier

multiplyPair ::
(Length, Message, Message, Key, Mod, CipherText, CipherText)
-> PrivateKey
-> Integer
-> IO Message
multiplyPair r@(bits,▓▓,▓▓,▓▓▓▓▓▓,▓▓▓▓▓▓▓,c1,c2) = do
 verifyZKP r
 prod <- (c1 * c2) `mod` modulus
 return prod

The redacted information is simply not available when passed as an input.

 17

Demo: Redacted Pair Multiplier

multiplyPair ::
Redacted RSAPair
-> PrivateKey
-> Integer
-> IO Message
multiplyPair r@(bits,_,_,_,_,c1,c2) = do
 verifyZKP r
 prod <- (c1 * c2) `mod` modulus
 return prod

The redacted information is simply not available when passed as an input.

 18

type family RetType a where

 GetParam RSAPair =

 (Int,

 Bitstring Integer,

 Bitstring Integer,

 Bitstring Integer,

 Bitstring Integer,

 Bitstring Integer,

 Bitstring Integer)

instance Name RSAPair where

getName _ = "RSAPair"

type family GerReturna where

 GetReturn RSAPair =

ValidRSAPair
(bitLen : CInt ,
 m1 : BitString bitLen,
 m2 : BitString bitLen,
 key : Bitstring bitLen,
 modulus : BitString bitLen,
 c1 : BitString bitLen,
 c2 : BitString bitLen)
-> Bit
And
 (Eq
 EncRSA(key, modulus, m1)
 c1) : BitString bitLen
 (Eq
 EncRSA(key, modulus, m2)
 c2) : BitString bitLen

Full Compiler Pipeline

ValidRSAPair

(bitLen : CInt ,

 m1 : BitString bitLen,

 m2 : BitString bitLen,

 key : Bitstring bitLen,

 modulus : BitString bitLen,

 c1 : BitString bitLen,

 c2 : BitString bitLen)

-> Bit

Let

 rsa1 = EncRSA(key, modulus, m1)
: BitString bitLen

 eqc1 = Eq rsa1 c1 : Bit

 rsa2 = EncRSA(key, modulus, m2)
: BitString bitLen

 eqc2 = Eq rsa2 c2 : Bit

And eqc1 eqc2 : Bit

ValidRSAPair : (Integer

Priv Bitstring Integer,

Priv Bitstring Integer,

Priv Bitstring Integer,

Priv Bitstring Int,

Bitstring Int,

Bitstring Int)

Custom Domain
Specific

Language

Type Description
for ZKP

Type-Level Haskell

Flattened Language Circuit Representation Libsnark Gadgets

DSL
Flattener

Type Extractor Haskell Generator

Circuit
Generator

C++
Gadget

Generator

 19

Conclusion

By using zkSNARKs to prove that values have
specific dependent types, it is possible to
provably assure compatibility and correctness
without revealing sensitive information and
extend our trusted computing base well beyond
our own system.

The approach we developed expands the scope
of what non-interactive zero-knowledge proofs
can capture to include properties about both the
execution and correctness of programs

 20

Future Work

I. Increase the extent of Haskell language integration to enforce verification on
a programming language level rather than trusting programmers to run the
verifier binaries externally.

II. Leverage approach to work with several ongoing efforts at LANL to help verify
mission-relevant cyber systems that utilize sensitive information

III. Build more advanced compiler automation to automatically integrate
type-level haskell and compile libsnark programs to allow faster development
times.

IV. Build optimization steps to reduce number of gates into the compiler, and
optimize existing gadgets.

V. Increase the expressivity of the language to include ZKPs for uncertainty
measures and machine learning model properties developed by fellow
LANL student, Zachary DeStefano (A-4).

 21

Questions?

dbarrack@lanl.gov

 22

Backup

 23

type family RetType a where

 GetParam RSAPair =

 (Int,

 Bitstring Integer,

 Bitstring Integer,

 Bitstring Integer,

 Bitstring Integer,

 Bitstring Integer,

 Bitstring Integer)

instance Name RSAPair where

getName _ = "RSAPair"

type family GerReturna where

 GetReturn RSAPair =

Full Compiler Pipeline

ValidRSAPair : (Integer

Priv Bitstring Integer,

Priv Bitstring Integer,

Priv Bitstring Integer,

Priv Bitstring Int,

Bitstring Int,

Bitstring Int)

Custom Domain
Specific Language

Type Description
for ZKP

Type-Level Haskell

Flattened Language Circuit representation Libsnark Gadget

Flattener

Type Extractor Haskell Generator

Circuit
Generator

C++
Generator

 24

Demo: Flattened Language Example
ValidRSAPair
(bitLen : CInt ,
 m1 : BitString bitLen,
 m2 : BitString bitLen,
 key : Bitstring bitLen,
 modulus : BitString bitLen,
 c1 : BitString bitLen,
 c2 : BitString bitLen)
-> Bit
Let
 rsa1 = EncRSA(key, modulus, m1) : BitString bitLen
 eqc1 = Eq rsa1 c1 : Bit
 rsa2 = EncRSA(key, modulus, m2) : BitString bitLen
 eqc2 = Eq rsa2 c2 : Bit
And eqc1 eqc2 : Bit

 25

Demo: Circuit Example
ValidRSAPair<FieldT>
(bitLen : Int,
 m1 : pb_variable_array<FieldT>,
 m2 : pb_variable_array<FieldT>,
 key : pb_variable_array<FieldT>,
 modulus : pb_variable_array<FieldT>,
 c1 : pb_variable_array<FieldT>,
 c2 : pb_variable_array<FieldT>)
-> pb_variable<FieldT>
Wires:
 rsa1 : pb_variable_array<FieldT>, bitLen
 rsa2 : pb_variable_array<FieldT>, bitLen
 eqc1 : pb_variable_array<FieldT>, bitLen
 eqc2 : pb_variable_array<FieldT>, bitLen
Gates:
 EncRSA(key, modulus, m1)
 Eq rsa1 c1 : Bit
 EncRSA(key, modulus, m2)
 Eq rsa2 c2 : Bit
And eqc1 eqc2 : Bit

 26

Demo: Custom Domain Specific Language Example

ValidRSAPair
(bitLen : CInt ,
 m1 : BitString bitLen,
 m2 : BitString bitLen,
 key : Bitstring bitLen,
 modulus : BitString bitLen,
 c1 : BitString bitLen,
 c2 : BitString bitLen)
-> Bit
And
 (Eq EncRSA(key, modulus, m1) c1) : BitString bitLen
 (Eq EncRSA(key, modulus, m2) c2) : BitString bitLen

 27

Shared Key and Modulus as a Type

With traditional proofs we have a choice, either supply the key and the modulus that
encrypted them so the receiver side can manually verify this property, or trust that
the input was prepared correctly and risk incorrect behavior.

We can encode this proof as the type “RSAPair” above, and generate a zkSNARK
to capture this property.

type RSAPair =
RSA(key, modulus, message1) == cipher1
and
RSA(key, modulus, message2) == cipher2

 28

Multiplicatively Homomorphic Property of RSA

If we encrypt two messages with the same key and modulus, the multiplication of
those two ciphertexts equals the encryption of the multiplication of the plaintexts

 29

Distributed Verification

Prover
Key

Verifier
Key

CipherText 1, CipherText 2,
Private key, Modulus

Verification Output, Ciphertext 1, Ciphertext 2

m1=7
m1=5

35

Verifier BinaryProver Binary

 30

Distributed Verification

Prover
Key

Verifier
Key

Generated
Outputs

Transferred
Outputs

Generated Proof and Public Inputs Generated Proof and Public Inputs

 31

Project Roadmap

1. Prototype and test program interoperability
– Manually implement skeleton code in place of zero-knowledge proofs

to interact with example program

2. Implement constraint related ZKP gadgets
– Constraints capture type information that is immediately useful to the

test program

3. Develop and set up prototype demonstrations
– Replace skeleton code with handcrafted ZKP gadgets
– Develop prototype compiler to read type annotations from file and

generate constraints
4. Benchmark and Evaluate

 32

Prototype ZKP Compiler

 33

(Int,
Bitstring Integer,
Bitstring Integer,
Bitstring Integer,
Bitstring Integer,
Bitstring Integer,
Bitstring Integer)

RSAPair

Type-Level Programming Gives Type Safety

Redacted

We can use type level programming to generate input and output types
for functions from a central type.

(Int,
PrivInt,
PrivInt,
PrivInt,
PrivInt,
Bitstring Integer,
Bitstring Integer)

ReturnType

 34

Type-level Haskell Generation Step

type family RetType a where
 GetParam RSAPair =
 (Int,
 Bitstring Integer,
 Bitstring Integer,
 Bitstring Integer,
 Bitstring Integer,
 Bitstring Integer,
 Bitstring Integer)

instance Name RSAPair where
getName _ = "RSAPair"

type family GetReturn a where
 GetReturn RSAPair =

 (Int,
 PrivInt,
 PrivInt,
 PrivInt,
 PrivInt,
 Bitstring Integer,

Expression Type-Level Haskell

RSAPair : (Int
Priv Bitstring Integer,
Priv Bitstring Integer,
Priv Bitstring Integer,
Priv Bitstring Int,
Bitstring Int,
Bitstring Int)

zkSNARK Type

 35

Compiler intermediate representations

Language
Flattened
Language

Circuit
representation

Libsnark Gadget

 36

Verification in a program

Type

Type Proof

Public Inputs

Prover
Key

Verifier
Key

Program

 37

A function to Illustrate Homomorphic Property

encryptMessagePair ::
Length
-> Message
-> Message
-> PublicKey
-> Modulus
-> (Length, CipherText, CipherText)
encryptMessagePair bits m1 m2 key modulus =
 c1 <- encrypt m1 key modulus
 c2 <- encrypt m2 key modulus
 return (bits, c1, c2)

This function encrypts two messages with the same can modulus, and returns them
along with the bit width.

 38

A function to Illustrate Homomorphic Property

multiplyDecryptPair ::
(Length, CipherText, CipherText)
-> PrivateKey
-> Integer
-> Message
multiplyDecryptPair (bits,c1,c2) key modulus = do
 prod <- (c1 * c2) `mod` modulus
 c3 <- decrypt prod key modulus
 return c3

This function multiplies to ciphertext together, then decrypts it with the given key.

Its correct functioning depends on the two ciphertexts having been encrypted with
the same key and modulus.

 39

Encryption Property Verified with ZKP

encryptMessagePair ::
Length
-> Message
-> Message
-> PublicKey
-> Modulus
-> IO (Redacted RSAPair)
encryptMessagePair bits m1 m2 key modulus =
 c1 <- encrypt m1 key modulus
 c2 <- encrypt m2 key modulus
 prepareZKP (bits, m1,m2, key, modulus, c1, c2)

This prepares the ZKP, which generates the proof files and redacts the information
we don't want the other function to see.

 40

A function to Illustrate Homomorphic Property

multiplyDecryptPair ::
(Redacted (RSAPair))
-> PrivateKey
-> Integer
-> IO Message
multiplyDecryptPair param@(bits,_,_,_,_,c1,c2) key modulus =
do
 verifyZKP param
 prod <- (c1 * c2) `mod` modulus
 c3 <- decrypt prod key modulus
 return c3

We verify the ZKP before multiplying the ciphertexts. If verification fails,
an error is thrown

 41

Demo Summary and Challenges

We were able to show an example of this approach using zkSNARKS to verify both
functions interacting in a program, and programs interacting across a file system.

It relies on the writing of zkSNARK gadgets, which using extant libraries is extremely
labor-intensive and requires knowledge of esoteric programming techniques.

In order to leverage the Haskell type system this approach requires type level
Haskell programming, which is considered niche even among advanced Haskell
programmers.

Can we mitigate these challenges?

 42

Benchmarks for Demo

 43

 < 20

+ *

*

 1 <

15

 < 20 1 <

and

and

3

18 4511 1 1

8101 1

Our function as a circuit

 44

 < 20

+ *

*

 1 <

15

 < 20 1 <

and

and

3

18 4511 1 1

8101 1

A redacted circuit with zkSNARKs

 45

 < 20

+ *

*

 1 <

15

 < 20 1 <

and

and

3

18 4511 1 1

8101 1

A redacted circuit with zkSNARKs

9?6?

 46

Example. You want to prove that you have beaten Where’s Waldo?
• Traditional Proof: Point to Waldo to demonstrate you know where he is

• Not zero-knowledge!
This kind of proof leaks all information about his location, much more than
simply that you have knowledge of the location

Zero-Knowledge Proof for Where’s Waldo?

 47

Zero-knowledge proof for “Where’s Waldo?”
1. Cut out a Waldo shaped hole in a much larger piece of paper
2. Position the hole over Waldo’s location

Zero-Knowledge Proof for Where’s Waldo?

Slide under paper

This precisely obfuscates
Waldo’s location while
demonstrating knowledge
of his whereabouts!

To adversaries, the book underneath could
hypothetically be in any random orientation

 48

Completeness vs. Soundness

Typical proof systems have 100% completeness and 100% soundness

Completeness: ℙ[true statement AND verifier accepts] = 1
“Everything true is provable”

Soundness: ℙ[false statement AND verifier rejects] = 1
“False statements aren’t provable”

 49

Cryptographic Proof Systems

Cryptographic proof systems have variable completeness and
soundness. For non-interactive zero-knowledge proofs we care about:

(Completeness) ℙ[true statement AND verifier accepts] = 1
“Everything true is provable”

(Soundness) ℙ[false statement AND verifier rejects] = 1 - ε
“Low chance that a proof of a false statement is
encountered”

We sacrifice minimal amount of soundness (have to break crypto to
produce counter-example) in order to get valuable proof properties

 50

Zero-Knowledge Proofs and Verifiable Computation

Zero-knowledge proofs (ZKPs) allow us to prove that a claim IS true
without revealing WHY it is true, even if the prover is untrusted and
malicious.
zkSNARKs are special ZKPs that are tiny and non-interactive

O(1)
size

O(n*log(n)^k)
size

O(n)
size

Inputs:
Logs

Schematics
Program Traces

Signals
Encryption Keys

Attestations
etc.

Outputs:
Results

&
ZK Proof of

Computational
Integrity

Homomorphically Encrypted* *with tweaks

 51

1

a

t0

b

t1

zkSNARK Construction for Program Verification [BCGTV13]

Computation

Arithmetic
Circuit

R1CS

QAP

LPCP

LIP

zkSNARK

int myFunction(int a) {
int b=a*a-4;
return 3*b+a;

}

π

S • A * S • B = S • C
1

a

t0

b

t1

0

1

0

0

0

0

1

0

0

0

1

a

t0

b

t1

0

1

0

0

0

Zero Knowledge Added

Succinctness Added

Interactivity Removed

zkSNARK for
Program Integrity

Proof Representation
Of Program Execution

Rank-1 Constraint System (R1CS):

libsnark
backend

Prover
Binary

Verifier
Binary

libsnark

 52

Theory Behind ZKPs
(Backup)

 53

PCPs & Hardness of Approximation

Intuition
Efficient approximation scheme for a problem
implies that it an easy to create a good enough
looking “fake” solution (witness)

So,
Hard to approximate

⟺
Hard to create a convincing fake witness that

appears optimal
⟺

Good witnesses imply that best solutions exist Easy to find Hard to find

← Gap →

 54

NIZK Overview

 55

1. Publish homomorphically encrypted building blocks for a program

2. Prover blindly re-assembles them to compute the desired circuit (e.g. an
evaluation of the PCP circuit) and adding random blinds where appropriate

3. Verifier checks content by simply decrypting

Circuit Evaluation

